# **PhotonHub Demo Centre** Thick-SOI photonics for sensing and imaging

## **Course Provider** VTT Technical Research Centre of Finland Ltd., Finland



**European Photonics Innovation Academy** 

## **Course Overview**

<u>Photonic integrated circuits (PICs)</u> can be realized on many different technology platforms and used for numerous different applications. This course focuses on the so-called <u>Thick-SOI platform and its use for sensing and imaging</u> <u>applications in the near and mid-infrared region</u>. Primary focus is on 3 µm thick silicon-on-insulator (SOI) waveguide technology, which is the most mature PIC technology platform at VTT. This platform is also available for small-to-medium volume contract manufacturing via VTT, and there is path to large-volume manufacturing via VTT's partners. Process design kits are available in multiple PIC design software platforms.

This one-day hands-on training course provides <u>industry</u> an overview of the Thick-SOI PIC platform and its feasibility in sensing and imaging applications. A <u>clean room tour</u> in Micronova offers an overview of the used fabrication methods and facilities. Hands-on training includes <u>1) the design of 3 µm SOI PICs using PIC design</u> <u>software, 2) General cleanroom visit and introduction to state-of-the-art manufacturing tools, and 3) PIC testing in the photonics measurement lab</u>. The last part includes semi-automated fiber-to-waveguide alignment, optical beam steering with an optical phased array (OPA) and testing of other silicon photonic chips.



## **Target Audience**

It is desirable but not essential that course attendees have a basic understanding of photonics. The course is ideally suited to those planning to develop new photonic products based on low-loss photonic integrated circuits (PICs) operating within the 1.2-6 µm wavelength range where the thick (µm-scale) silicon-on-insulator (SOI) waveguides can operate.

### **Expected Outcomes**

1) Understanding the technical advantages and limitations of Thick-SOI PIC technology, as well as its key applications

**IOTONHUB** 

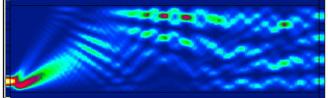
- 2) Learn how the Thick-SOI PICs are designed & simulated (hands-on activity)
- 3) See the fabrication process of 3 µm SOI PICs (visit to the clean room)
- 4) Learn how the Thick-SOI PICs are tested at chip-level (hands-on activity)
- 5) See demonstrations of 3 µm SOI PICs in imaging applications (hands-on activity)



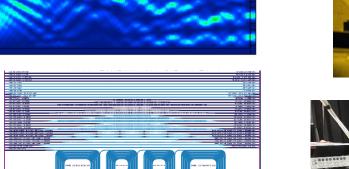
Version 6, 2023

3 µm

### **Course Schedule**


| Time          | Demo Activity                                                                             |
|---------------|-------------------------------------------------------------------------------------------|
| 09:00 - 10:45 | Introduction to the course, to Thick-SOI technology and its main applications             |
| 11:00 – 12:30 | Demo 1: Design of 3 µm SOI PICs using a process design kit (hands-on)                     |
| 13:30 – 15:00 | Demo 2: Clean-room visit to see fabrication flow (hands-on)                               |
| 15:15 – 17:00 | Demo 3: Chip-level testing and demonstration of Thick-SOI in sensing & imaging (hands-on) |
| 17:00 – 17:30 | Follow-Up Questions & Close                                                               |




## **Course Trainers**







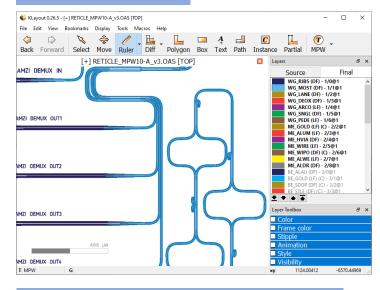




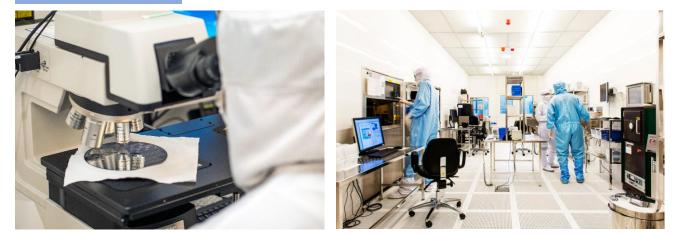


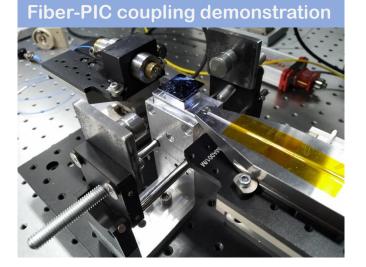


Course Director: Timo Aalto Course Manager: Somnath Paul


- Demo 1: Mikko Harjanne (PIC design)
- Demo 2: Fei Sun (clean room visit)
- Demo 3: Yisbel Marin / Somnath Paul (chip-level testing and application demos)




#### **European Photonics Innovation Academy**


#### **Course Demonstrators**

#### PIC design demo



Clean room tour









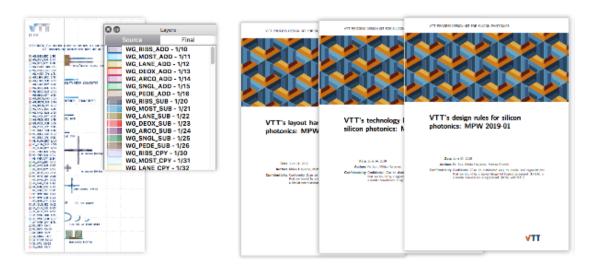
**European Photonics Innovation Academy** 

#### **Course Location, Schedule & Cost**



- Course location: VTT, Micronova, Tietotie 3, Espoo, Finland (few metro stops from downtown Helsinki)
- Course Schedule: 10.01.2024 (other dates to be confirmed later)
- Number of people: Maximum 10 people per course
- Course Cost: 250 Euros per person, includes catering and project consumables

#### **Further Information**


- timo.aalto@vtt.fi
- https://www.vttresearch.com/en
- www.photonhub.eu/euphotonicsacademy



#### **Course Material** (technical hand-outs)

**Digital course materials:** 

- Course instructions and notes
- Copies of slides
- Video recordings
- Process design kit (PDK) for 3 µm SOI PICs (some parts require a signed design kit license agreement)



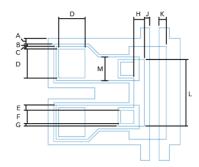



Figure 4.3: Mask parameters for the implanted heater.

| Table 4.1: Parameter values related to Fig. 4.3. |                                                |            |      |         |      |  |  |
|--------------------------------------------------|------------------------------------------------|------------|------|---------|------|--|--|
| Dimension                                        | Description                                    | Mask layer | Min. | Typical | Unit |  |  |
| А                                                | Gap between wire and SOI sidewall              | ME_WIRE    | 5.0  | 5.0     | um   |  |  |
| в                                                | Distance between pedestal edge and metal       | WG_PEDE    | 1.0  |         | um   |  |  |
| С                                                | Gap between contact pad opening and metal edge | ME_WIP0    | 3.0  | 10.0    | um   |  |  |
| D                                                | Size of contact pad opening                    | ME_WIP0    | 60   | 100.0   | um   |  |  |
| Е                                                | Heater via to wire edge distance               | ME_HVIA    | 3.0  | 3.0     | um   |  |  |
| F                                                | Size of heater via opening                     | ME_HVIA    | 5.0  | 5.0     | um   |  |  |
| G                                                | Heater via to implantation edge distance       | NE_HVIA    | 1.0  | 1.0     | um   |  |  |
| н                                                | Implanted heater width                         | NP_PINP    | 3.0  | 4.0     | um   |  |  |
| J                                                | Gap between implantation edge and waveguide    | NP_PINP    | 2.0  | 2.0     | um   |  |  |
| к                                                | Pedestal extension past waveguide edge         | WG_PEDE    | 2.0  |         | um   |  |  |
| L                                                | Implanted heater length                        | NP_PINP    |      | 100.0   | um   |  |  |
| м                                                | Width of aluminium wire                        | ME_WIRE    | 5.0  | 7.0     | um   |  |  |



#### **European Photonics Innovation Academy**



Integrated Photonics, PIC, PIC Design, PDK, Silicon-on-Insulator, SOI, Wafer Processing, Sensing, Imaging, Optical Phased Array, Optical Fiber, Laser, Testing, Test automation

## **Relevant Technology & Application Domain**

**Technology:** Silicon photonics

Application: Relevant to all application domains, but course focuses on sensing and imaging

