PhotonHub Demo Centre

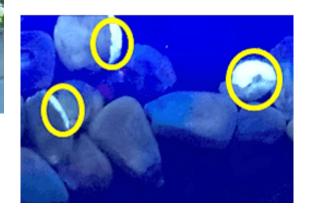
Photonics and Food

Course Provider
Vrije Universiteit Brussel,
Brussels Photonics,
Belgium

Course Overview

Photonics plays an important role in the screening of food products. This includes the detection of foreign objects, the classification of a product batch based on its quality, the monitoring of the (potential) presence of carcinogenic elements, authenticity tests on liquids in the framework of food fraud and the quality monitoring of water.

This one-day hands-on training course provides industry with a detailed overview of how photonics and photonics-based techniques can contribute to the quality control and safety of liquid and solid food products.



Foreign object detection

Ripeness classification of strawberries

Detection of mycotoxins in corn

Acrylamide precursors in potatoes

European Photonics Innovation Academy

Authentication of

Course Overview

Olive oils

Honey

Beers

Monitoring of drinking water quality

In the introduction part, the theoretical aspects of the various physical phenomena that can occur during food screening together with their related measurement setups will be discussed. Different case-studies will be presented illustrating the selection of the appropriate test set-up and data-processing techniques.

The second part of the course will focus on three demonstrators where participants can have handson experience.

Target Audience

It is desirable but not essential that course attendees have a basic understanding of photonics. The course is ideally suited for people from food and agriculture industry that want to explore the possibilities of implementing photonics-based techniques in their specific application. People from water companies are also highly welcomed.

Expected Outcomes

- 1) Understand key features of different photonics detection techniques used in food research
- 2) Evaluate various photonics test set-ups (hands-on activity)
- 3) Get familiar with machine learning techniques (hands-on activity)
- 4) Understand the photonic product design and manufacturing process

Course Schedule

Time	Demo Activity
09:00 – 10:30	Course Introduction & Tutorial
11:00 – 12:30	Demo 1: UV-VIS-NIR Absorption spectroscopy on solid and liquid food products (hands-on)
14:00 – 15:30	Demo 2: Fluorescence spectroscopy (hands-on) and scatter measurements on solid food products (illustration demo)
15:30 – 17:00	Demo 3: The use of machine learning techniques in food spectroscopy (hands-on)
17:00 – 17:30	Follow-Up Questions & Close

Course Trainers

wendy.meulebroeck@vub.be

lien.smeesters@vub.be

indy.magnus@vub.be

Course Directors: Prof. Heidi Ottevaere & Prof. Wendy Meulebroeck

Course Manager: Nathalie Debaes

Demo 1: Prof. Heidi Ottevaere & Prof. Wendy Meulebroeck

Demo 2: Dr. Lien Smeesters

Demo 3: Ir. Indy Magnus

Course Demonstrators

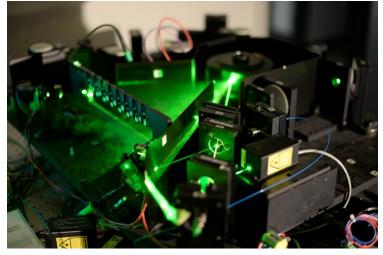
Demo 1: UV-VIS-NIR Absorption spectroscopy on solids and liquids

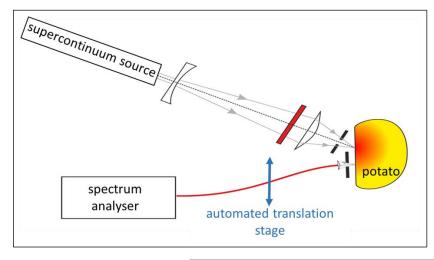
vinegars

vegetables

potatoes



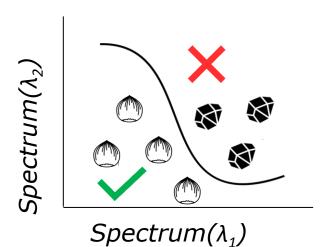

fruits


Course Demonstrators

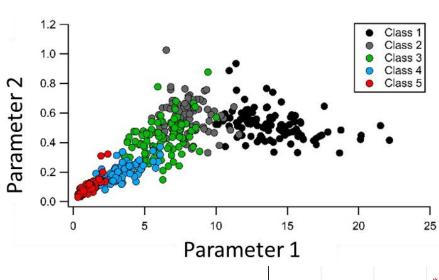
Demo 2: Fluorescence spectroscopy on mycotoxins

Potato

Nuts

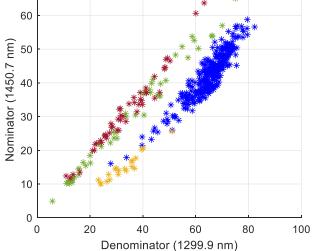


Corn



Course Demonstrators

Demo 3: Machine learning on recorded food data



Nuts

Strawberries

Course Location, Schedule & Cost

- Course Schedule (3 times a year exact dates to be confirmed)
- Number of people (Groups of 3 persons per hands-on station, with a maximum of 9 persons per course)
- Course Cost (250 Euros per person, includes catering and project consumables)

Further Information

- <u>DemoCentreFood@b-phot.org</u>
- www.b-phot.org
- www.photonhub.eu/euphotonicsacademy

Course Material (technical hand-outs)

PhotonHub Demo Centre

Course on Photonics and Food

Course Provider

Vrije Universiteit Brussel Brussels Photonics Belgium

Training Course Notes

Keywords

Food sensors, Solid food products, Liquid monitoring, Spectroscopy, Absorption, Fluorescence, Scattering, Machine learning, Food quality, Food safety, Food fraud, Water monitoring.

Relevant Technology & Application Domains

Technology: Free-Space Photonic Components & Systems

Application: Relevant to all application domains

